1) a) i) 16 ii) -5
b)

2) a) $b+q$
11.5
$c-b$
9.5
$a c$
72
$a+c+b$
20.5
$b-3$
-0.5
3) $3 f+2 \quad 10.25$
$10 c+f \quad 8$
$42-f \quad 2$
$c+2+0.25 \quad 2$
$c f+2 f \quad 5.25$
b) aorb
4) a) As we do not know the value of b in this formula, we have no way of knowing if the value of c is 4 . For example, if $b=2, c=2 \times 2$. This means c now equals 4 . However, if $b=3, c=2 \times 3$. This means c now equals 6 , not 4 .
b) This statement is correct. Although we do not know the exact values of b or c, we do know that 2 lots of b will give us c. If we apply the inverse operation, we can see that b must have a value that is half that of c.
5) a) This is false. $(8 \times 3)+9=33$
b) This is true. $(10 \times 1.5)+20=35$
c) This is false. $4 \times 2.5=10$

$$
\begin{aligned}
& 2 \times 2.25=4.5 \\
& 10+4.5=14.5
\end{aligned}
$$

1) A variety of answers are possible, for example:
$a=4, b=3, x=9, z=12, c=24$
$a=8, b=4, x=16,2=24, c=40$
2) A variety of answers are possible, for example:
$9+5+4=18$
$9+13+8=30$
$25+3+8=36$
$25+5+36=66$
