1) Use the bar models to help you to solve the following questions.
a) A plane is loaded with three crates. Each crate has a mass of 3300 kg . It is then filled with fuel. The mass of the fuel is twice the mass of a crate. What is the total mass of the cargo and fuel in tonnes?

b) A climber has climbed $\frac{7}{8}$ of the way up a mountain and stops to rest 450 m away from the summit. How high is the mountain in kilometres?

2) Solve the following questions, using a bar model to help when needed.
a) I walk for 1650 m , cycle for 5.4 km and run for 2.12 km . How far did I travel altogether? Give your answer in km.

b) A fish tank contains 10500 ml of water. A bucket holds 1.75 l of water. How many buckets of water will I need in order to fill my fish tank?

3) Some children are measuring the lengths of different items in their classroom. What do the items measure altogether in metres?

Bookshelf $=0.8 \mathrm{~m}$

1) Three children record their answer to this problem.

The milk bottle holds 1900 ml . I poured the same amount of milk into three cups and had 1675 ml left in the bottle. How much milk is in each cup?

Which child has given the correct answer?

Explain how you know.
\qquad
\qquad
2) Which bar model best represents this problem? Solve the problem and explain your answer.

Five equally sized jars of jam and a 250 g jar of pickles have a mass of 0.9 kg altogether. Give the mass of one jar of jam.
a)

b)

c)

\qquad
\qquad

1) Use the statements to match each volume of orange squash given below to each of the bottles.

Volumes:	
0.11 l	0.25 l
0.9 l	775 ml
150 ml	

2) a) A teacher is buying pencils for the school.

Each pencil has a mass of 2.35 g .
There are 38 pencils in each box.
The teacher decides to buy 30 boxes of pencils for the school.

Give the total mass of the pencils she has bought, in kilograms.

b) In the factory that makes the pencils, each order for boxes of pencils is placed on a set of scales before it is sent out.

What is the most number of boxes and least number of boxes that could be on each set of scales?
\qquad
\qquad
\qquad

