Maths Transition

Goodbye, Year 4 Hello, Year 5

Place Value Puzzle

Work with a partner or in a group to solve this puzzle.

3129

3160

Use these clues to find the missing number.

The mystery number has been ordered
with these numbers.

with these numbers.

?

2923

smallest greatest

As a Roman numeral, the **mystery number** has three Xs.

The **mystery number**, rounded to the nearest **one hundred** is **3100**.

The **mystery number**, rounded to the nearest **ten** is **3090**.

On an abacus, the **mystery number** will use 17 beads.

The mystery number is ______.

Think of your own mystery number. Can you write clues about your mystery number?

Calculation Course

Mariam and Piotr are going to school. They both set off from their homes with a number. Their numbers change as they make their way along the paths. What number will they have when they reach school?

Fraction Flags

Shade each flag using the given fractions.

$$\frac{2}{5} + \frac{1}{5} = \text{green}$$

$$\frac{9}{10} - \frac{6}{10} = \text{yellow}$$

The rest will be blue.

$$\frac{1}{2}$$
 = red

$$\frac{6}{8} - \frac{3}{8} = \text{yellow}$$

The rest will be white.

$$\frac{1}{3} + \frac{1}{3} = \text{red}$$

$$\frac{5}{6} - \frac{4}{6} = \text{yellow}$$

The rest will be blue.

$$\frac{1}{6} + \frac{2}{6} = \text{red}$$

 $\frac{11}{12} - \frac{5}{12} = \text{green}$

$$\frac{1}{8} + \frac{2}{8} = blue$$

$$\frac{3}{4} - \frac{1}{4} = \text{yellow}$$

The rest will be green.

$$\frac{1}{10} + \frac{2}{10} = green$$

$$\frac{4}{5} - \frac{1}{5} = \text{yellow}$$

The rest will be red.

Can you give a fraction for each of the 'remaining' colours?

Place Value Game

Each player will need:

0 - 9 digit cards

Instructions:

Shuffle your set of cards and place them face down.

The first player must turn over a digit card and place it on their grid. The second player will take their turn.

Repeat this until both players have a distance.

The aim of the game is to make the greatest distance. The player with the greatest distance scores one point.

The winner is the first player to score five points.

 Π

Want to try something different? Why not decide on a target distance in kilometres and the winner is the person who gets closest to the number. For example, try to make a distance closest to 2km.

Which Shape Am I Thinking Of?

Look at the shapes in the grid and pick one. Your partner will also pick a shape.

Take it in turns to ask your partner 'yes' and 'no' questions about their shape. Can you work out your partner's shape before they work out yours?

Key Vocabulary

two-dimensional edge obtuse
three-dimensional face right angle
sides surface symmetry
vertices acute regular

