1)

Place Value Grid		Stem Sentence	Decimal
Ones	tenths	There are 0 ones	
	$00 \bigcirc \bigcirc$	and 4 tenths.	0.4

Ones	tenths	There are 6 ones	
$\bigcirc \bigcirc$			
○○○○		and 0 tenths.	

Ones	tenths	There are 8 ones and 8 tenths.	8-8
$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$		

2) a) 3.6
b) 1.4
c) 5
3) a) $8+4=12$

Danka will therefore need 12 counters.
b)

4)

Ones	tenths
Oscar's number is 9.7.	
	$00 \bigcirc 0$

1) 3 ones and 12 tenths represents 4.2 not 3.12. When you have more then 9 tenths, you need to regroup. 10 tenths are the same as 1.
2) a) A, B and D all represent $6.1 . C$ is the odd one out

Ones	tenths
$\bigcirc \bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc \not Q \otimes$
	$\otimes \otimes \not \otimes \otimes$
	$\otimes \otimes \otimes \otimes$

because it represents 5.1.
b) You can make C into 6.1 by adding another counter.
3) You would need to add 5 more counters into the tenths column because 5 tenths add another 5 tenths makes ten tenths. Ten tenths is equivalent to one whole.
$0.5+0.5=1$

Ones	tenths			
	OOOO OOOO 0 OO	$=$	Ones	tenths
:---	:---			
O				

1) $0.8,1.7,2.6,3.5,4.4,5.3,6.2,7.1,8.0$
2) $4.6,3.7,2.8,1.9$ and 1 (equal to ten tenths)
3) The answer is 1.9 .

The method for solving problem:
Double $4.2=8.4$
$8.4-7=1.4$
$1.4+0.5=1.9$
4) This is true. When regrouped, 23 tenths is the same as 2 ones and three tenths (2.3).

If you add 2.3 to 6 , it makes 8.3. This proves that 8.3 is the same as six ones and twenty three tenths.

