1) Complete the sentences to match each grid.



a) There are \_\_\_\_\_ squares shaded out of \_\_\_\_\_.

There is\_\_\_\_\_ row shaded out of \_\_\_\_\_

The shaded area represents or



**b)** There are \_\_\_\_\_ squares shaded out of \_\_\_\_\_.

The shaded area represents



2) Shade the grid and circle the answers that match the statement: 70 squares shaded is the same as:



70 100 7

70

7 10

3) Complete the part-whole model.



4) Use the part-whole model to partition the fractions into tenths and hundredths.



**b)** 30 hundredths



| 1) | Grea is explainin  | a what this arid   | shows. Is he correct? | Explain your answer. |
|----|--------------------|--------------------|-----------------------|----------------------|
| '' | Oreg is explaining | g witat titis gita | SHOWS, IS HE COLLECT: | Explain your answer. |





There are two columns and one row shaded which represents  $\frac{3}{10}$  or  $\frac{30}{100}$ 



2) What is missing? Explain your reasoning.



3) Who has the most? Explain your answer. Can you use a diagram to explain?



Dylan

I have sixty eight hundredths.

I have eight hundredths and six tenths.



1) Find 10 ways you can to partition twenty-three hundredths using part-whole models like this one.





2) Read each child's statement and write in the correct fraction that matches.

| Craig | My fraction has five tenths.                                              |  |
|-------|---------------------------------------------------------------------------|--|
| Lois  | My fraction is greater than $\frac{57}{100}$ .                            |  |
| Ted   | My fraction has fifty four hundredths.                                    |  |
| Raj   | My fraction can be partitioned into $\frac{5}{10}$ and $\frac{5}{100}$ .  |  |
| Gina  | My fraction can be partitioned into $\frac{26}{100}$ and $\frac{3}{10}$ . |  |

<u>54</u>

 $\frac{57}{100}$ 

<u>56</u> 100 <u>59</u> 100

<u>55</u>