Maths Calculation Policy Concrete / Pictorial / Abstract

JUNIOR SCHOOL
Together we make a difference

This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added. It is a working document and will be revised and amended as necessary. Many variations have been included to provide teachers with a range of tools to support pupils in their grasp of number and calculation. To ensure consistency for pupils, it is important that the mathematical language used in maths lessons reflects the vocabulary used throughout this policy.

Recommended practice delivering a mastery approach

True mastery aims to develop all children's mathematical understanding at the same pace. As much as possible, children should be accessing the same learning. Differentiation should primarily be through support, scaffolding and deepening, not through task.

Evidence repeatedly shows that mixed ability seating increases less confident pupils' perception of mathematical capability, which impacts positively upon outcomes. While not a school policy, it is recommended to avoid ability groups.

This presents a challenge in ensuring the more confident mathematicians are being extended. An extension tasks to deepen understanding is the most simplistic way around this. Concrete, pictorial, abstract (CPA) concepts should not be confused as differentiation for lower, middle, higher attaining children. CPA is an approach to be used with the whole class and teachers should promote each area as equally valid. Manipulatives in particular must not be presented as a resource
to support the less confident or lower attaining pupils.

The abstract should run alongside the concrete and pictorial stage as this enables pupils to better understand mathematical statements and concepts.

addition
add, more, and
make, sum, total
altogether
double
near double
half, halve
one more, two more ... ten more ... one hundred
more
how many more to make ...?
how many more is ... than ...?
how much more is ...?
subtract take away how many are left/left over?
how many have gone?
one less, two less, ten less ... one hundred less
how many fewer is ... than ...?
how much less is ...?
difference between
equals
is the same as
number bonds/pairs/facts
missing number
tens boundary, hundreds boundary

addition
add, more, and
make, sum, total
altogether
double
near double
half, halve
one more, two more ... ten more ... one hundred
more
how many more to make ...?
how many more is ... than ...?
how much more is ...?
subtract take away how many are left/left over?
how many have gone?
one less, two less, ten less ... one hundred less
how many fewer is ... than ...?
how much less is ...?
difference between
equals
is the same as
number bonds/pairs/facts
missing number
tens boundary, hundreds boundary
inverse
addition
add, more, and
make, sum, total
altogether
double
near double
half, halve
one more, two more ... ten more ... one hundred
more
how many more to make ...?
how many more is ... than ...?
how much more is ...?
subtract take away how many are left/left over?
how many have gone?
one less, two less, ten less ... one hundred less
how many fewer is ... than ...?
how much less is ...?
difference between
equals
is the same as
number bonds/pairs/facts
missing number
tens boundary, hundreds boundary, ones
boundary, tenths boundary

ADDITION				
Objective/Strategy	Concrete		Pictorial	Abstract
YEAR 3 NC: Add numbers with up to 3 digits, using formal written methods of columnar addition Column addition - start off with no regrouping	 Dienes or numicon Add together the ones first, then the tens. Moving to using place value counters	Children mov using a tens a tens	to drawing the counters and one frame.	$\begin{array}{r} 223 \\ +114 \\ 337 \end{array}$ Add the ones first, then the tens, then the hundreds.
Move onto column addition with regrouping	Exchange ten ones for a ten. Model using numicon and place value counters.	$\bullet \bullet$ \ddots \bullet \bullet 5 1 \bullet	$\begin{array}{r} 34 \\ +17 \end{array}$ Children can draw a representation of the grid to further support their understanding, carrying the ten	$\begin{aligned} & 20+5 \\ & 40+8 \\ & \hline 60+13=73 \end{aligned}$

	$46+27=73$	underneath the line.	Start by partitioning the numbers before formal column to show the exchange. $\mathbf{5 3 6}$ $\frac{621}{11}$
Estimate the answers to questions and use inverse operations to check answers.	Estimating $98+17=$? $100+20=120$	Use number lines to illustrate estimation.	Building up known facts and using them to illustrate the inverse and to check answers. $\begin{array}{ll} 98+18=116 & 116-18=98 \\ 18+98=116 & 116-98=18 \end{array}$

ADDITION

NC: Add whole numbers with more than 4 digits, including using formal written methods Add decimals with 2 decimal places, including money.	As year 4 Children continue to use dienes or place value counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand. Introduce decimal place value counters and model exchange for addition.	$2.37+81.79$ tens onts tenter hundreates 00 1000 00009 00000 0 $0<$ 00 000 0000 00060 6	$\begin{array}{r} 72.8 \\ +54.6 \\ +127.4 \\ \hline 1.1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \hline \end{array}$
NC: Estimate and use inverse operations to check answers to a calculation.	As per Y3 Estimating $98+17=$? $100+20=120$	As per Y3 Use number lines to illustrate estimation.	As per Y3 Building up known facts and using them to illustrate the inverse and to check answers. $\begin{array}{ll} 98+18=116 & 116-18=98 \\ 18+98=116 & 116-98=18 \end{array}$

SUBTRACTION

Objective／Strategy	Concrete	Pictorial	Abstract	
YEAR 3 NC：Subtract numbers with up to 3 digits， using formal written methods of columnar subtraction Start with column subtraction without regrouping	47－32 Use base 10 or Numicon to model Mo uses Base 10 to subtract 142 from 373	 Draw representations to support understanding	$\begin{gathered} 47-24=23 \\ -\frac{48}{20+7} \\ \frac{20+3}{20+3} \\ 32 \\ -12 \\ \hline 20 \end{gathered}$	Intermediate step may be needed to lead into clear subtraction understanding．
Move onto column subtraction with regrouping	Begin with base 10 or Numicon．Move to pv counters，modelling the exchange of a ten into ten ones．	45 $\frac{-29}{16}$ Children may draw base 10 or pv counters and cross off		Begin by partitioning value columns Then move onto formal method

SUBTRACTION

SUBTRACTION

Objective/Strategy	Concrete	Pictorial	Abstract
YEAR 5 NC: Subtract whole numbers with more than 4 digits, including using formal written methods (columnar subtraction) Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal up to 3 decimal places	As year 4. 5643-4316= Model process of exchange using Numicon, base ten and then move to pv counters	Children to draw pv counters and show their exchange. See Y3. Especially when problem solving.	$\begin{array}{r} { }^{2} 8^{\prime \prime} x^{10} 0^{\prime} 6 \\ -\quad 2128 \\ \hline 28,928 \end{array}$ Use zeros for placeholders. $\begin{array}{r} { }^{10} x^{1}{ }^{8} 9 \cdot 0 \\ -\quad 372.5 \\ \hline 6796.5 \end{array}$
YEAR 6 NC: Subtract with increasingly large and more complex numbers and decimal values (up to $\mathbf{3}$ decimal places)	As year 4 5643-4316= Model process of exchange using Numicon, base ten and then move to pv counters	Children to draw pv counters and show their exchange. See Y3. Especially when problem solving.	$\begin{array}{r} { }^{146} 8 \mathscr{6}, 699 \\ -\quad 89,949 \\ \hline 60,750 \\ \hline 6105 \cdot 3 \mathrm{k} 19 \mathrm{~kg} \\ 36 \cdot 080 \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array}$

Year 3
multiplication
multiply
multiplied by
multiple, factor
groups of
times
product
once, twice, three times ... ten times
repeated addition
division
dividing, divide, divided by, divided into
left, left over, remainder
grouping
sharing, share, share equally
one each, two each, three each ... ten each
group in pairs, threes ... tens
equal groups of
doubling
halving
array
row, column
number patterns
multiplication table

Year 4 multiplication multiply multiplied by multiple, factor groups of times product once, twice, three times ... ten times repeated addition division dividing, divide, divided by, divided into left, left over, remainder grouping sharing, share, share equally one each, two each, three each ... ten each group in pairs, threes ... tens equal groups of doubling halving array row, column number patterns multiplication table multiplication fact, division fact

multiplication multiply	Year 5 multiplied by multiple, factor groups of
times	
product	
once, twice, three times ... ten times	
repeated addition	
division	
dividing, divide, divided by, divided into	
left, left over, remainder	
grouping	
sharing, share, share equally	
one each, two each, three each ... ten each	
group in pairs, threes ... tens	
equal groups of	
doubling	
halving	
array	
row, column	
number patterns	
multiplication table	
multiplication fact, division fact	

Multiplication	Year 6 multiply
inverse multiplied by multiple, factor groups of times product once, twice, three times ... ten times repeated addition division	
dividing, divide, divided by, divided into	
left, left over, remainder	
grouping	
sharing, share, share equally	
one each, two each, three each ... ten each	
group in pairs, threes ... tens	
equal groups of	
doubling	
halving	
array	
row, column	
number patterns	
multiplication table	
multiplication fact, division fact	

MULTIPLICATION

Objective/Strategy YEAR 3

NC: Multiply 2 digit numbers by 1 digit numbers

Start with repeated addition, then the grid method, progressing to the formal method

Pictorial

Children can represent their work with place value counters in a way that they understand.
They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.

Abstract

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

\times	30	5
7	210	35

$210+35=245$

Move forward to the formal written method.

35

$\mathrm{X} \mid 7$
245

- 3

MULTIPLICATION

MULTIPLICATION

Objective/Strategy	Concrete		
YEAR 5			

represent a 4-digit number multiplied

by a 1-digit number using concrete

nanipulatives. Then move onto\end{array}\right\}\)

It is important at this stage that they always multiply the ones first. Children can continue to be supported by place value counters at this stage of multiplication.

MULTIPLICATION

Objective/Strategy	Concrete	Pictorial	Abstract
YEAR 6 NC: Multiply multi-digit numbers up to 4 digits by 2 digits using formal written method of long multiplication.	Children build on their knowledge of column multiplication. It may be useful to revise multiplication by a single digit first, then 2-and 3-digit numbers before moving on when ready to the largest calculations. Manipulatives may still be used with the corresponding long multiplication modelled alongside. See previous year groups.	10 8 10 100 80 3 30 24 Continue to use bar models to support problem solving. See previous year groups.	3 0 4 6 \times 7 3 See previous year groups.
NC: Multiply one-digit numbers with up to two decimal places by whole numbers.			Remind children that the single digit belongs in the units column. Line up the decimal points in the question and the answer.

DIVISION

Ratified by the Headteacher July 2020

	and exchange the remaining ten for ones. Then share the ones.	42 by 3	
NC: Divide a 2-digit number by a 1 digit number with remainders.	Make links between division and repeated subtraction which is revision from Y 2 . $14 \div 3=$ Divide objects between groups and see how much is left over.	There are many different pictorial examples that may support children's understanding: 1. Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. $13 \div 4=3$ r 1 2. Draw dots and group them to divide an amount and clearly show a remainder.	Complete written divisions and show the remainder using r.

DIVISION

Ratified by the Headteacher July 2020

where there are remainders.	Move onto questions which require an exchange. $97 \div 4=$ Start with the biggest place value. We are sharing 90 into 4 groups. We can out 2 tens in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much is in 1 group so the answer is 24 remainder 1 .		

DIVISION

DIVISION

														($\times 100$)
								1		0	9	r	9	
				1		3	1	4	4	2	6			
						-	1	3	3	0	0			
								1	1	2	6			
						-		1	1	1	7			($\times 9$)
											9			

