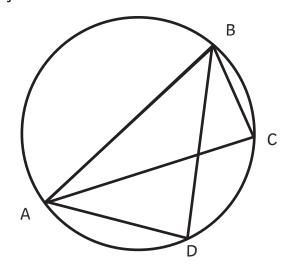

Circles 1

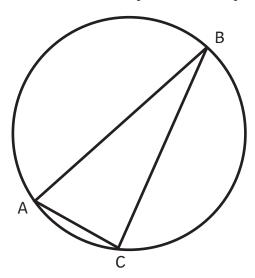

Draw a circle and mark 3 points: A, B and C anywhere on the circumference. Join the points with a ruler to make a triangle.

Measure the angles ∠ABC, ∠BCA and ∠CAB on your circle.

Measure the angles $\angle ABC = ___$ $\angle BCA = ___$ $\angle CAB = ___$

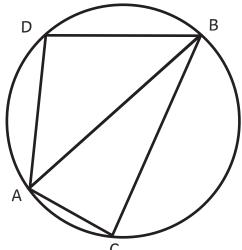
Mark another point on the circumference between points A and C, and call it point D. Draw a ruler line from A to D, and from B to D.

Measure the angles $\angle ABD$, $\angle BDA$ and $\angle DAB$ on your circle.


Measure the angles $\angle ABD = ___ \angle BDA = ___$

What do you notice?

Circles 2


Draw a circle. Draw a ruler line across the diameter, marking the points where the diameter meets the circumference as A and B.

Mark a third point C anywhere on the circumference, and join C to A and C to B using a ruler.

Measure the angle ∠BCA on your circle.

Mark point D anywhere on the opposite side of the circumference from C, and draw lines AD and BD.

Measure the angle ∠BDA on your circle.

What do you notice about \angle BCA and \angle BDA?

Answers

Circles 1

The angles inside each triangle should add up to 180°.

Angle \angle BCA and \angle BDA should be the same.

Circles 2

The angles \angle BCA and \angle BDA are both 90°.

Any triangle with all 3 vertices on the circumference of a triangle, where one side is the diameter will be a right-angled triangle.

