1) Each cube has a length of 1 cm . What is the volume of the shape?

2) $\quad \mathrm{l} \mathrm{kg} \approx 2 \mathrm{lb}$. Roughly how many lb is 4.5 kg ?
3) Translate the point $(2,5) 4$ to the right and 3 down.
4) Subtract 7 from 3
5) Put the shapes in ascending order of volume.

6) $\frac{1}{4}$ of an hour is equal to \square minutes.
7) How many km are the same as $3,217 \mathrm{~m}$?
8) What number comes next in the sequence? 879, 889, 899,
9) Each cube has a length of 1 cm . What is the volume of the shape?

10) $\quad \mathrm{l} \mathrm{kg} \approx 2 \mathrm{lb}$.

Roughly how many lb is 4.5 kg ?
9 lb
3) Translate the point $(2,5) 4$ to the right and 3 down.
4) Subtract 7 from 3

2) $\frac{1}{4}$ of an hour is equal to 15 minutes.
3) How many km are the same as $3,217 \mathrm{~m}$? 3.217 km
4) What number comes next in the sequence? $879,889,899,909$

L.O: To estimate the volume of objects

Sometimes we have to make a sensible guess about the volume of an object. What would be a sensible guess for the volume of Mrs Collis' phone?

$85 \mathrm{~cm}^{3}$

$227 \mathrm{~cm}^{3}$

$50 \mathrm{~cm}^{3}$

L.O: To estimate the volume of objects

Sometimes we have to make a sensible guess about the volume of an object. What would be a sensible guess for the volume of Mrs Collis' phone?

$85 \mathrm{~cm}^{3}$

I would estimate that my phone is about 1 cm thick (height), about 6 cm wide and 14 cm long which is about $84 \mathrm{~cm}^{3}$

L.O: To estimate the volume of objects

Estimate and match the object to the correct capacity.

$3,600 \mathrm{~cm}^{3}$

$1,000 \mathrm{~cm}^{3}$

$187,500 \mathrm{~cm}^{3}$

If you're in school - estimate the volume of an object then use connecting cubes to check. Do you need to fill the whole object?

L.O: To estimate the volume of objects

Sometimes we can use cubes to build a rough version of a shape to help us estimate volume.

Why would this not give us the exact volume of the shape?

L.O: To estimate the volume of objects

This shape has been built to model the volume of the mug.

Each cube has a volume of $10 \mathrm{~cm}^{3}$

1) What is the approximate volume of the mug?
2) A cupboard can fit 20 mugs in. What is the approximate volume of the cupboard in m^{3} ?

L.O: To estimate the volume of objects

This shape has been built to model the volume of the mug.

Each cube has a volume of $10 \mathrm{~cm}^{3}$

1) What is the approximate volume of the mug? $250 \mathrm{~cm}^{3}$
2) A cupboard can fit 20 mugs in.

What is the approximate volume of the cupboard in m^{3} ? $20 \times 250=$ $1000 \mathrm{~cm}^{3}=10 \mathrm{~m}^{3}$

